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Scientific progress and accomplishments

Leah B. Shaw

February 13, 2013

We are studying adaptive social networks, focusing on spread of infectious
disease as our primary example and including terrorist recruitment as an ad-
ditional example. In an adaptive network, individuals change their social con-
nections in response to their neighbors’ characteristics (e.g., infection status,
susceptibility to radical views), and these changes in network topology affect
subsequent properties of the individuals. For example, the network adapta-
tion could be avoidance of a disease via rewiring of links between infected and
noninfected individuals. Major goals of the project included extending previ-
ous models to incorporate more realistic network structure, adding spread of
information that affects human behavior, studying the extinction of diseases,
developing control strategies for epidemics on adaptive networks, and devel-
oping tools to analyze and monitor adaptive network properties. During the
project, we have made progress in all of these areas. Results from the entire
project period (February 2009 to February 2012) are summarized here.

1 New models for additional effects

We first discuss results of expanding or altering simpler adaptive network models
for greater realism or to study different phenomena.

1.1 Network community structure

Previous models for epidemics in adaptive networks did not account for lo-
cal community structures that occur in real social networks. Communities are
groups of nodes that are closely interconnected to each other but weakly con-
nected to the rest of the network. As the first model for community structure in
an adaptive network, we studied a network with two communities. We adjusted
the link rewiring rules so that the two communities were maintained despite the
network evolution process. The two communities may be heterogeneous (e.g.,
different average connectivity in each), and we quantified the community struc-
ture by the number of cross links between the communities. We developed a
stochastic computer simulation for the full adaptive network model with com-
munity structure and a lower dimensional mean field theory for dynamics of the
nodes and links.

1



0 0.5 1 1.5 2 2.5 3

x 10
−3

0

0.5

1

I

(a)

0 0.5 1 1.5 2 2.5 3

x 10
−3

0

0.5

1

I

(b)

0 0.5 1 1.5 2 2.5 3

x 10
−3

0

0.5

1

p

I

(c)

f=10−4

f=10−1

f=0

Figure 1: Steady state bifurcation diagram for infected fraction in an adaptive
network with communities as a function of infection rate p for different fractions
of cross links f between communities. Black: high connectivity community;
gray: low connectivity community. Stable mean field solutions (solid curves)
and simulations of the full system (circles) are in agreement. a) No cross links–
community structure is absent. b) Few cross links (0.01% of the links). c)
Moderate cross links (10% of the links).
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We studied the dynamics of the two community system for various network
geometries and parameter values. The mean field theory was in good agreement
with the full model. We observed several important effects of community struc-
ture in adaptive networks that were not observed previously when this structure
was absent. First, changes in community structure occurred in response to the
epidemic spread, and these changes tended to have an equalizing effect on the
connectivity within each community. Second, adaptation in the presence of
community structure also had an equalizing effect on infection levels in the
communities. As seen in Figure 1, even a small number of connections between
communities (panel b) leads to similar infection levels in the two communi-
ties at steady state. This is a qualitatively different steady state than occurs
in static networks, which can maintain low infection in a community that is
weakly connected to a community with high infection. Equalizing of infection
levels results from the adaptation increasing the number of connections in the
low-connectivity community. A manuscript on this work has been posted to the
preprint archive [17] and will soon be submitted to Physical Review E.

1.2 Information co-spreading in adaptive networks

Previous adaptive network models, including that discussed above, assume that
all individuals are well informed and able to make beneficial decisions on how to
change their social contacts. However, individuals may lack such information.
We have modeled the simultaneous spread of both an epidemic and information
about the epidemic. Information can spread through interpersonal contacts, ap-
pear spontaneously (e.g., individuals discovering the information on their own),
or be obtained from an external source. Introducing better information into the
system, for example by media campaigns, can serve as a source of control. There
are several possible interpretations of the concept “information.” Here we have
chosen it to mean awareness of the need to change or rewire one’s social con-
tacts to prevent infection spread. We developed a computer simulation for an
adaptive network with both epidemic and information spread, as well as a lower
dimensional mean field theory for the system. Qualitative changes in the dy-
namics occur due to the presence of information, such as periodic oscillations in
information and infection levels (Figure 2a). When only part of the population
is informed, there are limits to the efficacy of avoidance rewiring in preventing
disease spread. In particular, the epidemic threshold (transmission rate where
spreading begins to occur) saturates at some rewiring rate, and increased efforts
to avoid infection by rewiring do not further prevent an outbreak (Figure 2b).

We have also compared interpersonal communication and external media as
sources of information. For a given fraction of informed individuals in the pop-
ulation, we compared whether communication or media information was more
effective at suppressing disease transmission (Figure 3a). This depended on the
infection level in the system. When infection is very prevalent, communication
is more effective at reducing disease spread. Near the epidemic threshold, when
infection levels are low, the reverse is true. We find that the threshold infection
rate with media information is about twice that with communication (Figure

3
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Figure 2: Epidemic in an adaptive network with partial information from me-
dia. (a) Bifurcation diagram for infected fraction versus infection rate. Curves
are mean field steady states; symbols are simulations of the full system. Bars
indicate standard deviations of time series. Large bars are associated with re-
gions of periodic oscillations. (b) Threshold infection rate versus rewiring rate.
When information is partial, the effect of avoidance rewiring is limited.

3b). Near the epidemic threshold, communication is less effective at suppress-
ing epidemic spread because informed individuals break their links with infected
neighbors, reducing the chances that those neighbors will learn the information.
With external media, even an isolated individual has opportunities to become
informed. Another difference between communication and media information
is that when network adaptation is fast and information is communicated, the
system can split into two disjoint groups: one with disease and one with infor-
mation. People in the infected group are then isolated from the information and
have limited opportunities to protect themselves. A manuscript on this work is
in preparation [8].

1.3 Link deactivation

The studies discussed above, as well as many studies by other researchers, allow
individuals to permanently rewire their social connections away from risky con-
tacts. However, it is more realistic that people will temporarily avoid infected
neighbors but resume contact when the risk is past. We have developed a new
model in which links between susceptible and infected nodes can be deactivated
and later reactivated once the infected node has recovered. The model is well
described by our mean field theory, and we have analytically solved for the epi-
demic threshold and endemic infection levels. We find that bistability (stable
endemic state coexisting with stable disease free state) does not occur with link
deactivation, in contrast to models with link rewiring (e.g., Figure 1b,c).

We identify two parameter regimes in the system depending on the speed of
the network adaptation. When the network changes slowly, adaptation reduces
the number of active contacts per individual and thus reduces disease spread,
but the details of which links are turned off are unimportant. The behavior in
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Figure 3: Comparison of media information and communication effectiveness at
suppressing epidemic spread in an adaptive network. (a) Infected fraction versus
informed fraction when information arises from communication (blue) or media
(red). (b) Ratio of threshold infection rate with media information to threshold
infection rate with communication, versus information level in population in the
absence of disease. Blue: results of mean field model; red: results of a simple
approximate argument.
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Figure 4: Network adaptation via temporary link deactivation. (a) Slow net-
work dynamics: Infected fraction vs. infection rate for various ratios of link
deactivation rate to reactivation rate (d/a). Symbols are simulation results for
epidemic model on adaptive network with slow deactivation. Curves are pre-
dictions for static network with the same connectivity. (b) Fraction of infected
nodes as a function of deactivation rate d. Symbols: simulation results for adap-
tive network with fixed ratio of deactivation and reactivation rates. The mean
field solution for model with adaptation (black solid curve) is accurate over the
whole parameter range. The static network with the same connectivity (red
solid curve) matches only for slower network adaptation. The red dashed curve
is for the original network with all links active.
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this case is similar to epidemic spread on a static network with the same con-
nectivity (Figure 4a). When the network dynamics are fast, adaptation removes
dangerous connections in a targeted way and better controls the disease spread
(Figure 4b). Interestingly, the connectivity of the network does not decrease
monotonically as the link deactivation rate is increased. Instead, connectiv-
ity actually increases when deactivation becomes rapid enough to control the
infection spread and the number of links needing to be deactivated decreases.

A paper on the link deactivation model has been published in J. Statistical
Physics [18].

1.4 Risk/benefit-motivated decision making

As another approach to model how individuals may or may not perform self
protective social adaptation, we are developing a model based on game the-
oretic ideas. Individuals change their connections based on an assessment of
the risk and benefit of those connections. Motivated by sexually transmitted
diseases, we assume that individuals derive a certain intrinsic benefit from mak-
ing a connection with a neighbor (which may depend on the desirability of the
neighbor). When we allow the network to adapt to the presence of a disease
without immediately noticeable symptoms, individuals must assess risk based
on the limited information they have, such as typical prevalence of the disease in
the population. The perceived risk of a connection is assumed to increase as the
infected fraction in the population increases. Further, perceived risk increases
as the degree (number of connections) of the potential neighbor increases, thus
increasing the likelihood that the potential neighbor has already been infected.
We have developed a computer simulation of the system and a theoretical model
to predict its behavior. Adaptive risk assessment reduces disease spread in the
population when compared with a system that assumes constant risk (Figure
5a). The typical number of connections an individual makes (its average degree)
emerges as a tradeoff between benefit and risk, which respectively cause creation
and termination of links. The presence of infection leads to a net reduction in
connections (Figure 5b). We are continuing to study the properties of the model
as a function of parameters and will write a paper on this system for submission
to a scientific journal.

1.5 Terrorist recruitment

As a non-epidemic example in adaptive social networks, we have modeled re-
cruitment to a cause, such as terrorist recruitment, in adaptive networks. Many
papers discuss terrorist networks as optimal structures that balance communi-
cation efficiency with maintaining the secrecy/security of the networks (e.g, [6]),
while ignoring the dynamical processes that take place on such networks. An-
other class of work [1, 19] models the dynamics of terrorist recruitment within
a well-mixed population, where the existence of network structure is excluded
from the discussion, and therefore any network changes that may arise as a result
of node dynamics are ignored. Models that include both terrorism recruitment
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Figure 5: Risk-benefit system. (a) Fraction of population infected versus in-
fection rate: comparison of system with adaptive risk assessment and system
with no adaptation (fixed risk assessment). (b) Effect of infection on average
degree (number of contacts) per individual in adaptive network. High infection
rate is associated with large infected fraction and large reduction in number of
contacts.

dynamics and network structure are extremely rare, and no such model has
considered adaptive changes of the social network structure.

We have developed a model for the time evolution of a social network as
terrorists recruit individuals from a pool that is susceptible to radical ideas. We
modeled the network evolution with members belonging to one of three classes:
non-susceptible, susceptible, and terrorist, following the categories used in [19]
in the absence of network structure. By treating radical ideas as a phenomenon
that can spread person-to-person along social contacts, we built on our previous
studies of epidemic spread in networks. Terrorist nodes adapt by rewiring their
connections away from non-susceptible nodes and toward susceptible nodes to
maximize their recruiting ability. This type of rewiring is the opposite of the
avoidance rewiring used in epidemic models, so the recruitment model provides
an example of a new type of adaptation.

In addition to simulating the recruitment process on a finite population
network, we have developed a mean field theory describing the system and have
identified parameter regimes in which the mean field accurately predicts the
terrorist level in the population (e.g., Figure 6). We have studied the interplay
of the recruiting rate and the amount of adaptation. There are several parameter
regimes of interest, depending on the fraction of individuals in the population
that are susceptible to radical ideas, which will vary between countries. We
have derived expressions for the threshold parameter values at which recruiting
begins to be successful. We find that when susceptibles and terrorists are both
at low levels, and individuals become susceptible to radical ideas infrequently,
network adaptation is vital for successful recruiting. Preliminary results have
been published in a conference proceedings [14]. More recent work has been
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theory (curves) are in good agreement.

posted on the preprint archive [16] and is under review at Physical Review E.

2 Analysis, monitoring, and control of adaptive
networks

We next discuss our progress on methods for analysis, monitoring, and control
of adaptive networks.

2.1 Epidemic extinction

It is desirable to understand the factors that promote epidemic extinction and
to drive disease systems toward extinction/eradication. Prior to studying ex-
tinction in an adaptive network context, we have developed new analytic tech-
niques in low dimensional globally coupled examples. In a stochastic system,
small noise effects will drive the disease to extinction along an optimal (most
probable) path. We have designed new tools based on variational principles to
analyze this optimal path to extinction.

In a finite system of discrete individuals, extinction is inevitable in the long
time limit unless there is a source of reintroduction. We begin with the master
equation, which is a set of differential equations describing the time evolution of
the probability to find the system in a given state at a particular time. Following
[5], we make the assumption that extinction is a rare event whose probability
decreases exponentially with population size. We maximize the extinction prob-
ability to seek the most probable path to extinction. This optimization problem

8
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Figure 7: FTLE field (measure of sensitivity to initial conditions) for a single
species population model. The vertical axis q is the population size (arbitrary
units), and the horizontal axis p corresponds to a momentum due to noise.
The optimal path connects the deterministic endemic state (q 6= 0, p = 0) to
the stochastic extinct state (q = 0, p 6= 0) and represents the most probable
path for the system to take to extinction. a) FTLE field. b) FTLE field with
analytically determined optimal path overlaid.

for stochastic systems can be converted to a problem of finding a trajectory in
a deterministic system with twice as many dimensions: position variables cor-
responding to the original population variables and momentum variables corre-
sponding to the force due to the noise on each population variable. The optimal
path is the trajectory carrying the system from the endemic state to a stochastic
extinct state. Once it is found, we know the trajectory that the system is most
likely to follow to extinction, and we can compute the extinction probability
along the path to determine how the lifetime of the endemic state scales with
parameters of interest.

We have shown that the optimal path has a saddle structure [2]. It forms
a separatrix between two regions of phase space, and therefore the dynamics is
very sensitive to initial conditions in the neighborhood of the optimal path. (For
example, initial points on either side of the separatrix will diverge from each
other in time.) We have developed a new method for locating the optimal path
based on exploiting this sensitivity. We compute a field of finite time Lyapunov
exponents (FTLE) [4], which are a measure of how quickly nearby trajectories
diverge in time. We have shown that there is a ridge of maximal FTLE values
that corresponds to the optimal path. Figure 7a shows the FTLE field for
a single species population model. In Figure 7b, the analytically determined
optimal path is overlaid and is observed to correspond to the ridge of maximal
FTLE values. We have published two papers on this method for locating the
optimal path to extinction [2, 13].

We have also developed a method for embedding lower dimensional models
for which the optimal path is known (such as that of Figure 7) within higher
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Figure 8: Most probable path to extinction for a SIS (susceptible-infected-
susceptible) epidemic model on a static social network. Colors indicate the
probability density function averaged over multiple stochastic trajectories to
extinction. The predicted optimal path to extinction from our theory is over-
laid (green curve). Two 2-dimensional projections of the same optimal path are
shown for visualization purposes. (a) Projection onto subspace of I nodes vs. SI
links. (b) Projection onto subspace of I nodes vs. II links.

dimensional models of interest. Numerically locating the optimal path can be
difficult in high dimensional systems, but this embedding allows us to track the
optimal path by starting with the known path and continuously varying a pa-
rameter. We have derived approximate dynamical equations for epidemic spread
on a static social network, which describe the time evolution of the nodes and
the links, and we have embedded a simpler epidemic model (without a network
structure) within this higher dimensional system. Our continuation approach
allows us to determine the most probable path to epidemic extinction within a
social network. Sample results are shown in Figure 8. Our predicted optimal
path is in good agreement with trajectories observed in stochastic simulations
that ended in extinction. Although tracking an optimal path as a parameter
slowly varies is easier than finding a path without prior information, this re-
mains a complicated, high dimensional problem. Recent work by Lindley and
Schwartz has led to improved numerical methods for finding optimal paths [7],
and we are working with these researchers to combine our approaches. These
ideas will be extended to extinction in adaptive networks, including extinction
in the presence of vaccine control strategies [15]. We have observed previously
that vaccination and adaptation work in synergy to reduce the epidemic lifetime
by orders of magnitude.
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2.2 Improved moment closure for better mean field theo-
ries

The mean field theories we have discussed are equations for the time evolution
of nodes and links. However, changes in the number of links of each type de-
pend on higher order network structures, such as triples of nodes. Generating
a mean field theory requires closing the system of equations by approximating
higher order structures in terms of nodes and links. The standard approach to
moment closure [3] is based on a homogeneity assumption. The neighborhood
of each node is assumed to be similar to that of every other node of the same
type. Although this assumption often works well for simple models without
much long range correlation, we have found parameter regimes for the terrorist
recruitment model in which the mean field theory is less accurate due to approx-
imations about the network geometry. Inaccuracies have also been identified in
certain parameter regimes in adaptive epidemic spreading models [9]. Develop-
ing more accurate mean field theories is desirable because the mean field system
(∼ 10 equations) is so much lower dimensional than the full network system
(usually ∼ 104 nodes in our simulations) or even heterogeneous mean field the-
ories developed by others (e.g., [10]) (∼ 102 equations but becomes much larger
if nodes can have several states).

We have introduced a new approach to moment closure to generate more
accurate low dimensional mean field models. Rather than making an ad hoc
homogeneous assumption for how triples of nodes depend on link and node
variables, we obtain a different closure by calculating how the triples depend on
nodes and links in the limit of extreme parameter values, such as rapid network
adaptation. We then bring this asymptotically derived closure to standard pa-
rameter ranges, where we find that it can still hold. Figure 9 shows some of
our improved mean field results using the new moment closures for both the
terrorist recruitment model and an epidemic spreading model. A paper about
the moment closure techniques is in preparation.

2.3 Monitoring

We have developed a metric to quantify adaptive network structures. In an
adaptive network, the network structure and the status of the nodes interact in a
feedback loop. We used mutual information [12] between time-shifted time series
to look for evidence of feedback behavior in our adaptive epidemic spreading
model. Peaks were expected in the mutual information as a function of time
shift, which would indicate that the node status at earlier times is predictive of
the network geometry at later times and vice versa. Figure 10 shows the network
geometry, measured by the degree (number of neighbors) of a particular node,
responding to the node’s status. However, the response of the node’s status
to the network geometry was not clear in our system, probably because the
feedback in this direction is weaker. This metric will be applied to a more
suitable test case in the future.
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Figure 9: Results of improved moment closures for adaptive networks. Green
curve: prediction from standard approximation; black curve: prediction from
new moment closure; red circles: observed values from simulation. (a) In adap-
tive recruitment model, recruited fraction vs. recruitment rate. (b) In epidemic
spread model, number of infected-susceptible-infected node triples per suscep-
tible node, vs. link rewiring rate.

0 500 1000
0

0.1

0.2

0.3

0.4

0.5

lag time

m
ut

ua
l i

nf
or

m
at

io
n

Figure 10: Mutual information for network structure responding to node status
versus lag time. The structure responds to the node in approximately 100 time
units.
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Figure 11: Dependence of endemic state average lifetime on vaccine frequency
ν. Closed circles are for a static network and open circles an adaptive network.
Two orders of magnitude less vaccination is needed to drive the epidemic to
extinction in the adaptive network case.

2.4 Control

We have also studied control strategies for epidemics in adaptive networks. Con-
trol was implemented by adding random pulsed vaccination of susceptibles. We
showed that vaccine control is much more effective in adaptive networks than
in static networks due to an interaction between the adaptive network rewiring
and the vaccine application. Orders of magnitude less vaccine application was
needed to drive the disease to extinction in an adaptive network than in a static
one (Figure 11). The reason for the synergy between network adaptation and
vaccination is the following. The social adaptation leads to susceptible nodes
having higher than average degree, because individuals are trying to reduce their
connections to infected nodes. When vaccination of susceptibles occurs, this au-
tomatically selects the highest degree nodes to be vaccinated. Targeting of high
degree nodes is known to be an effective vaccination strategy in static networks
[11], and in adaptive networks this process happens automatically without re-
quiring knowledge of the whole network geometry or targeting of specific nodes.
This work has been published in Physical Review E [15].
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